Table 12. Symmetry operations used to generate neighbouring molecules from coordinates of atoms in the asymmetric unit (Table 6)

(i)	($-x,-y$,	-z)
(ii)	(2-x, 1-y,	-z)
(iii)	($x, y, 1+z$)	
(iv)	(1-x, 1-y,	
(v)	(1-x, 2-y,	1-z)
(vi)	$(1+x, \quad y$,	z)
(vii)	$x, 1+y$,	z)

The authors wish to thank Mrs J.Dollimore, Professor M.M. Woolfson and Dr R.D.Diamand for the use of their computer programs, and also Dr J. Milledge for carrying out one of the computations. All other computations were made using original programs. Thanks are also due to the Medical Research Council for the award of a Research Scholarship to one of us (A.N.B.) during the course of this work, a more complete account of which is given elsewhere (Barrett, 1967). We also thank Dr S. J. Morris for growing the crystal specimens and Dr C. H. Carlisle for suggesting the problem.

References

Barrett, A. N. (1967). Ph. D. Thesis, University of London. Buerger, M. J. (1959). Vector Space. New York: John Wiley.
Diamand, R. D. \& Drew, M. G .B. (1966). I.U.Cr. World List of Crystallographic Computer Programs, 3068. Utrecht: Oosthoek.

Dollimore, J. (1966). A Fourier Program for Luna, Circular No.1(2). Document No.LSP32, Univ. of London Atlas Computing Service.
Dunitz, J. D. \& Rollett, J. S. (1956). Acta Cryst. 9, 327.

Fischmann, E., MacGillavry, C. H. \& Romers, C. (1961). Acta Cryst. 14, 753.
Furberg, S. (1955). Acta Chem. Scand. 9, 1557.
Hanic, F. (1966). Acta Cryst. 21, 332.
Hauptman, H. \& Karle, J. (1953). The Solution of the Phase Problem. I. The Centrosymmetric Crystal. A.C.A. Monograph No.3, New York: Polycrystal Book Service. (a) p.12, (b) pp. 46 and 47, (c) pp.39-43.

Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1741.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-203. Birmingham: Kynoch Press.
Karle, I. L. \& Britts, K. (1965). Z. Kristallogr. 121, 2/4, p. 191.
Karle, I. L., Hauptman, H., Karle, J. \& Wing, A. B. (1958). Acta Cryst. 11, 257.

Karle, J., Hauptman, H. \& Christ, C. L. (1958). Acta Cryst. 11, 757.
Karle, I. L. \& Karle, J. (1963). Acta Cryst. 16, 969.
Main, P. \& Woolfson, M. M. (1963). Acta Cryst. 16, 731.

Rabinowitz, J. C. \& Snell, E. E. (1948). J. Biol. Chem. 176, 1157.
Sim, G. A. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.
Woolfson, M. M. (1954). Acta Cryst. 7, 61.
Woolfson, M. M. (1961). Direct Methods in Crystallography, p.23. Oxford: Univ. Press.
Zachariasen, W. H. (1952). Acta Cryst. 5, 68.

Crystallography of $\operatorname{Pr}\left(\mathrm{ReO}_{4}\right)_{3} . \mathbf{3 H}_{2} \mathrm{O}$, Praseodymium Perrhenate Trihydrate

By William G.R.de Camargo
Department of Mineralogy, University of S. Paulo, SP, Brazil
and C. R. Leite
Faculdade de Filosofia, Ciências e Letras, Araraquara, SP, Brazil

(Received 11 January 1968)

Abstract

The monoclinic crystals of praseodymium perrhenate trihydrate have a well developed $\{100\}$ pinacoid form, and poorly developed remaining crystallographic forms: $\{001\},\{011\},\{012\},\{102\},\{102\},\{110\}$ and $\{\overline{1} 12\}$. The crystallographic constants could be computed from the observed interfacial angles: $a: b: c=1 \cdot 539: 1: 2 \cdot 141$ and $\beta=86^{\circ} 03^{\prime}$. The crystals are light green, with no appreciable pleochroism, presenting the following optical constants: $X=\alpha=1 \cdot 678 ; b=Y=\beta=1 \cdot 688 ; Z=\gamma=1 \cdot 690 ; Z \wedge c=35^{\circ}-40^{\circ}$ and $2 V_{\text {calc }}^{(+)}=53^{\circ}$. The unit-cell parameters, determined by precession photographs and refined by powder diagrams, resulted in the values : $a_{0}=11 \cdot 68, b_{0}=7 \cdot 47, c_{0}=16.06 \AA$ and $\beta=86^{\circ} 04^{\prime}$, space group $P 2_{1} / c$. With four molecules per unit cell the calculated specific gravity of $4.49 \mathrm{~g} . \mathrm{cm}^{-3}$ agrees very well with the observed one of $4.51 \mathrm{~g} . \mathrm{cm}^{-3}$.

Crystals of praseodymium perrhenate trihydrate, $\mathrm{Pr}\left(\mathrm{ReO}_{4}\right)_{3} .3 \mathrm{H}_{2} \mathrm{O}$, synthesized for the first time by Giesbrecht, Perrier \& Vicentini (1966) (in the Chem-
istry Department of the University of São Paulo, Brazil) have been the object of the crystallographic investigation reported in this paper.

The crystals are monoclinic, of well developed tabular shape (Fig.1), sometimes reaching as much as 1.0 cm in width. The main crystallographic form, the orthopinacoid $\{100\}$, is often associated with the forms $\{011\},\{012\},\{102\}$ and $\{\overline{1} 02\}$. Nearly ideal crystals show a poor development of the $\{001\},\{110\}$ and $\{\overline{1} 12\}$ forms. Goniometric measurements (Table 1), yielded the following crystallographic constants:

$$
a: b: c=1 \cdot 539: 1: 2 \cdot 141 ; \beta=86^{\circ} 03^{\prime}
$$

Table 1. Goniometric measurements

Faces	$\varphi_{\text {meas, }}$	ϱ	$\varphi_{\text {calc, }}$	ϱ
(001)	$90^{\circ} 00^{\prime}$	$3^{\circ} 57^{\prime}$	-	-
(100)	9000	9000	-	-
(110)	3231	9000	3308	$\overline{5}$
(011)	151	6454	154	64
(012)	341	4707	343	4611
(102)	9000	3715	-	3727
$(\overline{1} 02)$	-9000	3225	-	3208
(112)	$-\sim 3715$	~ 5149	-3308	48

Table 2. Powder data for praseodymium perrhenate trihydrate
$\mathrm{Cu} K \alpha$ radiation, $r=57.3 \mathrm{~mm}$ and quartz internal standard.

hkl	$d_{\text {carc }}(\AA)$	$d_{\text {obs }}(\AA)$	$I / I_{0}{ }^{*}$	$h k l$	$d_{\text {calc }}(\AA)$	$d_{\text {obs }}(\AA)$	I / I_{0}
100	11.65	11.72	6	411	$2 \cdot 65$ \}	$2 \cdot 66$	2
002	8.01	8.02	1	106	2.64 \}	$2 \cdot 66$	2
011	6.77 \}	6.76	3	314	2.54		
T02	$6 \cdot 78$	6.76	3	412	2.52	$2 \cdot 53$	0.5
102	6.36			224	2.52		
110	6.29 \}	6.35	7	322	2.52		
200	5.83	$5 \cdot 81$	2	404	2.44		
T12	$5 \cdot 02$	5.04	5	130	2.44	$2 \cdot 43$	1
211	$4 \cdot 48$ \}	$4 \cdot 50$	$2 d$	224	$2 \cdot 43$	$2 \cdot 43$	1
202	$4 \cdot 55$	$4 \cdot 50$	$2 d$	025	$2 \cdot 43$		
013	$4 \cdot 34$	$4 \cdot 34$	$0 \cdot 5$	032	2.38 ,	$2 \cdot 37$	$0 \cdot 5$
211	4.35 \}	$4 \cdot 34$	0.5	206	2.37	$2 \cdot 37$	
212	$4 \cdot 07$	4.09	4	132	$2 \cdot 34$		
004	4.01	4.01	1.	500	2.33	$2 \cdot 33$	0.5
113	4.00	4.01	1.	T32	$2 \cdot 32$		
300	$3 \cdot 88$			421	$2 \cdot 29$		
212	$3 \cdot 89$	$3 \cdot 89$	5	230	$2 \cdot 29$	$2 \cdot 29$	2
I04	$3 \cdot 87$			$\underline{2} 25$	2.29	$2 \cdot 29$	2
021	$3 \cdot 64$	$3 \cdot 64$	3	324	2.29		
121	$3 \cdot 49$			-	-	2.21	$2 d$
121	$3 \cdot 46$			-	-	$2 \cdot 16$	1
310	$3 \cdot 45$			-	-	2.09	3
T14	$3 \cdot 44$			-	-	2.05	2
311	$3 \cdot 41$	3.49 to 3.38	10 d	-	-	2.01	3
204	$3 \cdot 41$			-	-	1.975 to 1.959	$2 d$
302	$3 \cdot 40$			-	-	1.932	0.5
213	$3 \cdot 39$			-	-	1.899	3
022	$3 \cdot 38$			-	-	1.854	1
114	3.32	$3 \cdot 32$	2	-	-	1.821	1
311	$3 \cdot 33$ \}	$3 \cdot 32$	2	-	-	1.806	1
204	$3 \cdot 20$	$3 \cdot 20$	2	-	-	1.735	3
312	$3 \cdot 10$]			-	-	1.690	1
214	$3 \cdot 10$	$3 \cdot 10$	2	-	-	1.662	1
221	$3 \cdot 11$			-	-	1.544	$2 b$,
123	$2 \cdot 99$			-	-	1.531	$2 b$
$\overline{3} 13$	$2 \cdot 98$	$2 \cdot 99$	3	-	-	$1 \cdot 447$	2
222	$2 \cdot 96$			-	-	$1 \cdot 345$	$1 b$
123	$2 \cdot 93$			-	-	1.248	$1 b$
400	$2 \cdot 91$	$2 \cdot 91$	$2 d$	-	-	$1 \cdot 188$	$1 b$
115	2.90	$2 \cdot 91$	$2 d$	-	-	1.160	$1 b$
304	2.89			-	-	$0.845 \alpha_{1}$	1
313	$2 \cdot 82$			-	-	$0.842 \alpha_{1}$	
115	$2 \cdot 81$	$2 \cdot 82$	1	-	-	$0.809 \alpha_{2}$	$1 b$
204	$2 \cdot 80$			-	-	$0.806 \alpha_{1}$	$1 b$
024	2.73						
410	2.72	$2 \cdot 71$	2				
411	2.71						
314	2.70						
402	$2 \cdot 68$						
321	$2 \cdot 68$						
006	$2 \cdot 67$	$2 \cdot 67$	$2 d$				
223	$2 \cdot 67$						
I24	2.67						

[^0]The symmetry $2 / m$ has been determined by the microscopic observation of centrosymmetrical etch pits, which were successfully obtained on the (100) and (100) crystal faces after immersion in ethyl alcohol for about 10 seconds. The small percentage of water, usually contained in alcohol, was enough to permit the partial dissolution of the crystals.

Under the polarizing microscope the crystals are apple-green in colour, with no appreciable pleochroism, the extinction angle $Z \wedge c$ ranging between 35° and 40°, and with positive optical character. The angle $2 V$ has been computed from the refraction indices as measured by the immersion method. The following optical constants were obtained:

$$
\begin{aligned}
X=\alpha & =1.678 \\
b=Y=\beta & =1.688 \\
Z=\gamma & =1.690 \\
\text { Birr. } & =0.012 \\
Z \wedge c & =35^{\circ}-40^{\circ} \\
2 V_{\text {calc }} & =53^{\circ} .
\end{aligned}
$$

Both unit cell and space group were determined by the precession method, with a single crystal of about $1.0 \times 0.5 \times 0.2 \mathrm{~mm}$. Film measurements, made on the reciprocal level ($h 0 l$), (0 kl) and ($h k 0$) photographs, yielded the following unit-cell dimensions:

Fig. 1. Crystal of praesodymium perrhenate trihydrate showing the forms: $\{001\},\{100\},\{110\},\{011\},\{012\},\{102\},\{102\}$ and $\{\overline{1} 12\}$.

$$
\begin{aligned}
& a_{0}=11.69 \AA \\
& b_{0}=7.49 \AA \\
& c_{0}=15.93 \AA \\
& \beta=86^{\circ} \\
& V_{0}=1391.45 \AA^{3} .
\end{aligned}
$$

The systematic absences of $h 0 l$ and $0 k 0$ reflexions for l and k odd indicated a 2_{1} screw axis and a c glide plane, and consequently the space group $P 2_{1} / c$. The observed specific gravity $4.51 \mathrm{~g} . \mathrm{cm}^{-3}$, measured by the pycnometer method (immersion in benzol), suggests 4.02 molecules per unit cell. Assuming these four molecules, the calculated density was $4.49 \mathrm{~g} . \mathrm{cm}^{-3}$, which is in very good agreement with the experimental data.

The unit-cell parameters determined by the precession method were refined by powder photographs taken with a $114 \cdot 6 \mathrm{~mm}$ camera and $\mathrm{Cu} K \alpha$ radiation (Table 2). A quartz internal standard was used to minimize random errors in the measurements. The following cell parameters were obtained by the powder method:

$$
\begin{aligned}
& a_{0}=11 \cdot 68 \AA \\
& b_{0}=7.47 \AA \\
& c_{0}=16 \cdot 06 \AA \\
& \beta=86^{\circ} 00^{\prime} \\
& V_{0}=1397 \cdot 93 \AA^{3} .
\end{aligned}
$$

According to the 'Bravais rule', the best developed crystal faces are related to the lattice planes with the greatest interplanar spacing ($d_{\text {hkl }}$), or, in other words, lattice planes with the lowest unit reticular area ($S_{h k l}$), since V_{0}, the unit volume ($V_{0}=S_{h k l} . d_{h k l}$), is a reticular constant.

This law, further modified by Donnay \& Harker (1937), and extended to the effect produced by both lattice type and space group, may, with some restrictions, be applied to the present case.

In the space group $P 2_{1} / c$, the screw axis 2_{1} will reduce the d_{010} spacing by a factor $\frac{1}{2}$ and the corresponding form will recede in morphological significance. The effect of the c glide plane, applied to the [010] zone, will reduce to a half the $d_{h o l}$ spacings, when $l=$ odd. The corresponding planes ($h 0 l$) are thus also decreased in morphological significance. The observed

Table 3.

Observed morphological sequence	Ideal morphological sequence	Lattice planes	$d_{\text {hkl }}$	Unit-lattice areas $S_{h k l}$
(100)	(100)	100	$11.72 \AA$	$119 \cdot 28 \AA^{2}$
(011)	(001)	002	8.02	174.31
(102)	(011)	011	6.76	$206 \cdot 79$
(T02)	(102)	102	6.76	$206 \cdot 79$
(012)	(102)	102	$6 \cdot 35$	$220 \cdot 15$
(001)	(110)	110	$6 \cdot 35$	$220 \cdot 15$
(110)	(012)	012	$5 \cdot 46$	256.03
(112)	(112)	T12	$5 \cdot 04$	$277 \cdot 37$

crystal forms follow, in general, the conditions imposed by the space group $P 2_{1} / c$. From structural data, the ideal morphological sequence does not agree fully with the observed sequence of morphological importance (Table 3); only the $\{001\}$ and $\{110\}$ crystal forms do not follow the 'Donnay-Harker law'. These anomalies may be ascribed to other physical factors, not considered by this rule (bond energy, etc.).

The authors do not propose to carry out further work on this compound.

References

Giesbrecht, E., Perrier, M. \& Vicentini, G. (1966). Private communication.
Donnay, J. D. H. \& Harker, D. (1937). Amer. Min. 22, 446.

Acta Cryst. (1969). B25, 698

Determination of the Light-Atom Positions in $\mathrm{Mo}_{2} \mathrm{BC}$ *

By Gordon S. Smith, A. G. Tharp \dagger and Quintin Johnson
Lawrence Radiation Laboratory, University of California, Livermore, California 94550, U.S.A.

(Received 26 April 1968)

Abstract

A previous investigation of the crystal structure of $\mathrm{Mo}_{2} \mathrm{BC}$ by Jeitschko, Nowotny \& Benesovsky (Mh. Chem. (1963) 94, 565) resulted in the direct location of the Mo atoms; the light atoms were assigned probable positions on the basis of geometrical arguments. The authors reinvestigated the crystal structure using diffractometrically recorded intensities. The crystals are orthorhombic, $a=3.086$, $b=17 \cdot 35, c=3 \cdot 047 \AA$; space group, Cmcm . For four units of $\mathrm{Mo}_{2} \mathrm{BC}$ per unit cell, the calculated density is $8.74 \mathrm{~g} . \mathrm{cm}^{-3}$. Full-matrix, least-squares refinement resulted in an R index of 3.5%, and a confirmation of the structure model of Jeitschko et. al., viz. C atoms in octahedral sites (six Mo neighbors) and B atoms forming zigzag chains passing through the centers of trigonal prisms of Mo atoms. Bond distances are: Mo-C, $2.08-2.17$; Mo-B, 2.31 and 2.77; B-B, 1.79; Mo-Mo, 2.93-3.10 \AA. A number of other metal-B, C systems were examined in a search for additional examples of the $\mathrm{Mo}_{2} \mathrm{BC}$-type structure, but without success. The metals studied were: $\mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Nb}, \mathrm{Ta}$ and W ; the authors were also unable to prepare $\mathrm{Mo}_{2} \mathrm{BSi}$.

Introduction

In their investigation of the crystal structure of $\mathrm{Mo}_{2} \mathrm{BC}$, Jeitschko, Nowotny \& Benesovsky (1963) (hereafter referred to as JNB) were able to determine only the metal-atom positions from their diffraction data. Using geometrical arguments, JNB placed the light atoms so that the boron atoms formed zigzag chains, as found frequently in monoborides and the carbon atoms occupied octahedral holes (six Mo neighbors) as found, for example, in NaCl-type monocarbides. The structure resulted in very reasonable interatomic distances. On the other hand, several metallic borocarbides of composition $\mathrm{MB}_{2} \mathrm{C}_{2}$, with $\mathrm{M}=\mathrm{a}$ lanthanide element (Smith, 1964) or scandium (Smith, Johnson \& Nordine, 1965), have exhibited novelly connected B,C networks. It therefore seemed of interest to establish directly the light-atom positions in $\mathrm{Mo}_{2} \mathrm{BC}$. Further interest is attached to this problem with the discovery (Johnston, 1964) that $\mathrm{Mo}_{2} \mathrm{BC}$ becomes superconductive below $5 \cdot 4^{\circ} \mathrm{K}$.

[^1]
Experimental

The compound was prepared by arc-melting appropriate amounts of Mo metal filings, boron and carbon (as graphite) in a gettered argon atmosphere. The fused button was turned over and remelted several times to improve the homogeneity. Parallelepiped-shaped single crystals were obtained by crushing the button.

An X-ray powder pattern was readily indexed on the basis of the C-centered orthorhombic cell $(a=3.086$, $b=17.35, c=3.047 \AA$) given by JNB. These lattice constants were used in subsequent calculations, our own values based on $\lambda_{\mathrm{Cu} \mathrm{K}}^{\alpha} \mathrm{=}=1.5418 \AA$ being insignificantly different. Probable errors in the lattice constants are estimated to be about $0 \cdot 2 \%$. No impurity lines were observed.

A chemical analysis of a portion of the button gave these percentages: Mo, $89 \cdot 0 \pm 0 \cdot 1$; B, $4 \cdot 97 \pm 0 \cdot 02$; C, $5 \cdot 43 \pm 0 \cdot 12$ (average of two analyses). Corresponding theoretical percentages for $\mathrm{Mo}_{2} \mathrm{BC}$ are $89 \cdot 37,5 \cdot 04$ and $5 \cdot 59$, respectively. The analysis corresponds to a Mo: $\mathrm{B}: \mathrm{C}$ atomic ratio of $2 \cdot 000 \pm 0 \cdot 002: 0 \cdot 991 \pm 0 \cdot 004: 0$: $0.971 \pm 0 \cdot 022$. JNB reported that the phase was possibly carbon-poor, but no quantitative figures were given.

[^0]: * Intensities visually estimated. $b=$ broad, $d=$ doublet. Very weak and diffuse reflections are not recorded.

[^1]: * Work performed under the auspices of the U.S. Atomic Energy Commission.
 \dagger Permanent address: Chemistry Department, California State College at Long Beach, Long Beach, California.

